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We examine an encounter game problem for a nonlinear conflict-controlled sys-
tem, We have shown that sufficient conditions for a successful completion of the
nonlinear position encounter game problem being examined can be derived,
under specified assumptions, from the regularity conditions of suitable differen-
tial games, As an example we analyze the solution of the geometric-coordinate
encounter problem for two objects (material points) whose motions are described
by quasi-linear differential equations; there is a "gap" in the control system of
the first (pursuing) object. The paper is closely related to the investigations in
[1—4].

1, We consider a conflict-controlled system described by the vector differential equa-
tion r=f(tzuv), u&ElP, veEQ (1.1)
Here = is the system's n-dimensional phase vector; u and » are r -dimensional con-
trol vectors of the first and second player, respectively; P and Q are closed bounded
sets, The function f (¢, z, u, v) is assumed to be continuous in all arguments, satisfies
Lipschitz conditions in z in each bounded domain of space {z} and satisfies the condi-
tions of extendibility of all solutions z (¢) of the contingency equation z" € F (, z) for
all 1> t,. Here F(t,z) =cof(t, z,u,v)foruec P and v € Q.

A closed set M — the first player's target —is given in space {zr} .The initial position
{15, 7o} is fixed, An admissible strategy of the first player U is defined as the function
which associates a closed set U/ (¢, z) € P with every position {¢, z} , where the sets
U (t, z) are upper semicontinuous relative to inclusion as the position (i, zj changes,
The motion z [¢] == x |1, t4,%4, U] is defined as any absolutely continuous function satis-
fying the conditions z [¢,] = 4 and 2" [{] C Fy (¢, z [t]) for almost all ¢ > tx. Here
Fy(t,2) = co{f(t, x, u, v)| u & U (¢, 2), v € Q). By definition, the strategy U/, guaran-
tees the encounter of point z [¢} with target M from the position {4, z,} at an instant
4> tg, if 2 [0] € M for any motion z [i] = z [¢, t,, Zoy Ug]

The synthesis problem for control u, operating on the feedback principle and guaran-
teeing the encounter of point z [:] with set M under arbitrary actions of the second play-
er » & Q ,based on any information he has, can be formulated in the form of the follow-
ing encounter problem [1]. Find the instant ¢ > #, and the strategy U, guaranteeing
the encounter of point z [:] with M from position {¢y, z,} at the instant 0.

We introduce an auxiliary system described by the vector differential equation

=9t u—v, uEP,vEQ (1.2)

Here z is the system's n-dimensional phase vector; u, and v, are the r-dimensional
control vectors of the first and second players, respectively; P, and ¢, are bounded,
convex and closed sets, The function ¢ (¢, z) is assumed to be continuous in all argu-
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ments and to satisfy a Lipschitz condition in =.
We consider the following problem, Find the pair of controls {u1° (¢), »1° ()} which

yields a solution to the following program maximin problem for system (1. 2)

plz (8. t,, z,, us° v1°), M] =max minp[z (0, t,, Ty u1, 21), M]  (1.3)

v(t) wi(d)

We denote g, (2, 24, 8) = p [2 (D, t4, 2a, 4,°, 9,°), M]. We assume that the regularcase
of the game of encounter with set M holds for system (1. 2),i.e. for every position {t,
Ze}, te < 9, for which 0 < &, (tg, Z4, B) < 8, 6 > 0 = const, problem (1.3) has a unique
solution {u,° (t), »,° (#)} and the point z;; of M, closest to the point z (8, ty, zy, 4;°,
7,°), is unique as well, In the regular case of the encounter game for system (1. 2), for
a fixed value of & the function e, (¢, z, ¢) , continuous for ¢t <94 and 0 < e, < 8, is
differentiable in the domain ¢ <<{® and U < ¢, < 6 and satisfies the inequality [2]

min max %?-: min max [%+ (%‘)'((p t, &)+ wm— v;)]: (1.4)

MmEP,; ey wWEP; 1,eQ,
deo dego \’
max [+ (Fo) @ € 2) +uy — )] <0
1€=Q1

We define the extremal strategy U, for system (1. 2) as follows: if &, (¢, z, 9) = 0
or & (i z,8)>6 ,orif :> 9, then y'® = P1; however,if 0 < g, (¢, z, ) <8
and t < 4, then U(e?) (¢, z) is added together from all vectors v, = P, which satisfy
the minimax condition

mox (5) @0+ = = mi max (32) @ 9 b —n) @9

The following assertion can be proved analogously to the theorem in [1],

Let the encounter game for the motion of system (1.2)be regular, Then the extremal
strategy U'%) is admissible. If from the initial position {t,, z,} the set M is absorbed
at an instant 9° in a program manner with respect to the minimax, i.e. if p [z (8, £, z,,
1°, 9°), M} = 0, then the extremal strategy Ug*) solves the problem of the encounter
of the motion of (1. 2) with set M,

We state the fundamental result as follows,

Theorem. Let the regular case of the game of encounter with a set hold for the
auxiliary system (1. 2) and let the relation

min max s’ (@ (¢, #) -+ u1— 1) > min maxs'f (¢, z, u, v) (1.6)
wmEP; 1,E ueP reQ
where & is an arbitrary n-dimensional vector and the prime denotes transposition, be
fulfilled. Then, if from the initial position {¢,, z,} the set M is absorbed by system
(1.2) at an instant & in a program manner with respect to the minimax, then the corre-
sponding first player’'s strategy U*) can be constructed, guaranteeing him the encounter
of the motion of system (1, 1) with M at instant @,
Proof. With due regard to (1.4} and (1. 5), from (1. 6) follows

min max [—%-{-(%—)’/(t,x, u, v)]< (L7

uesP reQ
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. deo ( deo )' ]
min max |~z— —_ ¢, — 0
< B Ql[ % T\ 37 ) @)+ u—n)|<

Thus, in the domain ¢ '# we have constructed a continuous function e, (¢, z, #) satis-
fying the condition g, (9, z, 4) > 0 for z (8) & M and such that inequality (1. 7) is ful-
filled for t< ¥ and € (¢, z, 9) > 0 . We define the first player's strategy ¢ forthe
original system (1, 1) in the following manner: if e, (t, z, %) = 0 or &, (¢, z, ¥) > §,
or if > @, then U® = P; however, if 0 < g, (t, z, 8) < 6 and ¢ < ¢, then U® (¢, 2)
is added together from the vectors u, & P which satisfy the minimax condition

max s’ () f (¢, z, ue, v) = min max s’ (1) f (¢, z, u, v)
v&Q uEP 1= Q '

(s (t) = e | 97)
According to Theorem 2. 1 of [3], if &, (¢, 2,) < 0, then strategy Ug‘” solves the prob-
lem of the encounter of the motion of (1. 1) with set M at the instant ¥ = ¥°, where
9 is the instant of program absorption of set M by the motion of (1. 2) from the initial
position {¢,, o).

2, Example, Letthe motion of the first pursuing object be described by the equa-

tions . .
W =1VYs Yo = Ua 2.1

¥s = Aygd + u cos @ — ugsina, y = u; sin e+ uzcos
y="{p --- b v={0,0, u, u}
Here u is the control of the first pursuing player (object). The choice of the first play-
er's control is subject to the constraint
ug? (1] 1 ug? [2] < p2 (2.9
There is a gap in the first player's control system; therefore, instead of the control u [t]

a certain control u* {t] acts on the system, where the vector u* [¢] differs from the
vector u [¢] by a rotation through some angle o [¢] ; this obstacle must satisfy the con-

straint
lelflISa<n/2 (2.3)
The motion of the second (pursued)player is described by the equations

Zy =2y, %, =3y, I3 = Azl -+ v, 2z = vy (2.4)
V= {01 01 Y1y "’2}

Here » is the control of the second player (object). The choice of the second player's
control is subject to the constraint
v? [t] + 22 (] < V2 (2.9)

We note that A (A > 0) is a small parameter in systems (2, 1) and (2. 4),
As the game's payoff we examine the quantity

18] = (5, [0] — 7, [0)2 + (3, [8] — 2, [B1)2 (2.6)

The first player's task is to minimize the quantity y [8]; the second player's aim is to
maximize the quantity y {8].

Let us now consider an auxiliary encounter game with payoff (2. 6), in which the play-
ers' behaviors are described by the equationsin[5]. Consequently,the first player movesin
accordance with Eqgs, (2. 1) in which a = 0. Constraint (2, 2), in which the quantity p
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has been replaced by p cos a4 is imposed on the choice of the first player's control. The
second player's equations of motion and the constraint on his choice of controls coincide
with (2, 4) and (2. 5), respectively.

Let us write the equations of the encounter game being investigated, as well as the
equations for the auxiliary encounter game, as sixth-order systems by making a change
of variables according to the formulas

Ty =Y — I T3 =Yg — % Tg =Yg Ty =Yg Ty =23, T6 == 24

The choices of the controls in the encounter game under investigation are subject to
constraints (2. 2) and (2. 5), respectively, The constraint on the gap imposed on the first
player's control, is given by inequality (2.3). According to (2. 6) the game payoff quan-
tity y[©] takes the form y [#] = 0, i.e. the game termination set is given by the con-~
dition M : {z; =0, =, = 0}.

The first player strives to insure that the point {z; [t], z, [¢]} hits onto the set M : {z; =
0, zg = 0}.at some instant & = 9¥°, while the second player tries to delay as long as pos-
sible the instant of point {z; [t], 2, [¢]} hitting onto M. We note that in the encounter
game being investigated the first player is opposed by the obstacle o [¢] and by the se-
cond player choosing control » [], both being unknown to him, It is reasonable to assume
that the second player chooses the function ¢ [t] as well.

In the auxiliary system the first player's choice of control is subject to inequality(2,2)
in which the quantity p has been replaced by p cos a,, while the second player's choice
of control is subject to inequality (2. 5). The game termination set M is the same as in
the game being investigated, From [5] it follows that when A << A, (where A, is some
small number) the solution of the program maximin problem (1, 5) for the auxiliary sys-
tem is achieved by a unique pair of controls {u° [¢], »* [¢]}. Here the set M is convex.
Consequently, the point zp; of M, closest to point z (®, ¢o, z,, u°, v°),is unique. Thus,
the regular case of a game of encounter with set M holds for the auxiliary system, As
is not difficult to be convinced, relation (1. 6) is fulfilled for the auxiliary system and
for the system being investigated., In such a case, taking into account the value of g, (¢,
z, 8, A) computed in [5], we can construct, according to the theorem proved above, the
first player's strategy U{*) guaranteeing that the motion of the system being investiga-
ted is led from the initial position {t,, z,} onto set M at the instant &,. (The instant &,
is determined as the smallest positive root of the equation g, (2o, 2o, 4,2 =0)
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